Knocking on Closed Doors: Host Interferons Dynamically Regulate Blood-Brain Barrier Function during Viral Infections of the Central Nervous System

نویسندگان

  • Brian P. Daniels
  • Robyn S. Klein
  • Rebecca Ellis Dutch
چکیده

The central nervous system (CNS) is among the most important organ systems, integrating information inputs and coordinating the activity of all other body systems. Like many organ systems, the CNS is susceptible to infection by pathogenic microorganisms, including many arboviruses that are considered neurotropic because they are able to achieve robust replication in neural cells. Neurotropic arboviruses capable of infecting the CNS include members of the Flaviviridae (e.g., West Nile and Japanese encephalitis viruses), Bunyaviridae (La Cross and Rift Valley Fever viruses), and Togaviridae (Alphavirus species) families, all RNA viruses that are maintained in complex life cycles involving a nonhuman primary vertebrate and a primary arthropod vector [1]. A variety of mechanisms exist to protect the CNS from the entry and infection of neurotropic viruses, including innate immune responses and multilayer barriers formed by diverse host cell types [2]. However, many arboviruses gain access to the CNS either as free virions, within motile infected cells, and/or by using axonal transport mechanisms of peripheral nerves that directly enter or form synapses within the CNS. Viruses that enter via the bloodstream must cross CNS endothelial barriers that exhibit unique specializations, collectively termed the blood-brain barrier (BBB).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viral Pathogen-Associated Molecular Patterns Regulate Blood-Brain Barrier Integrity via Competing Innate Cytokine Signals

UNLABELLED Pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs), such as viral RNA, drives innate immune responses against West Nile virus (WNV), an emerging neurotropic pathogen. Here we demonstrate that WNV PAMPs orchestrate endothelial responses to WNV via competing innate immune cytokine signals at the blood-brain barrier (BBB), a multicellular inte...

متن کامل

P11: The Effect of Flavonoids in Memory

Flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. Flavonoids can be modulated neuronal function and there by influencing memory, learning and cognitive function. Dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficit...

متن کامل

P 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis

Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...

متن کامل

Neuroinvasion and Inflammation in Viral Central Nervous System Infections

Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In th...

متن کامل

Immune Responses to Non-Tumor Antigens in the Central Nervous System

The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015